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We consider a branching random walk in random environment on Zd where
particles perform independent simple random walks and branch, according to a
given offspring distribution, at a random subset of sites whose density tends to
zero at infinity. Given that initially one particle starts at the origin, we identify
the critical rate of decay of the density of the branching sites separating tran-
sience from recurrence, i.e., the progeny hits the origin with probability <1 resp.
=1. We show that for d�3 there is a dichotomy in the critical rate of decay,
depending on whether the mean offspring at a branching site is above or below
a certain value related to the return probability of the simple random walk. The
dichotomy marks a transition from local to global behavior in the progeny that
hits the origin. We also consider the situation where the branching sites occur
in two or more types, with different offspring distributions, and show that the
classification is more subtle due to a possible interplay between the types. This
note is part of a series of papers by the second author and various co-authors
investigating the problem of transience versus recurrence for random motions in
random media.
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1. INTRODUCTION AND RESULTS

1.1. Two Colors

Let

p=[ p(x) : x # Zd ] (1.1)

be a field of numbers satisfying 0�p(x)<1 for all x # Zd. Site x is colored
green with probability p(x) and red with probability 1& p(x), indepen-
dently of the other sites. In this way a random coloring of Zd is obtained.
Start with one particle at the origin. This particle performs a simple ran-
dom walk on Zd until it hits a green site. Upon hitting this green site the
particle branches according to offspring distribution

q=[qi : i�0] (1.2)

i.e., with probability qi the particle is replaced by i new particles (0�qi�1
for i�0, � i�0 qi=1). Each new particle proceeds to perform a simple
random walk, until it hits a next green site and branches according to the
same offspring distribution, etc. There is no branching at the red sites. At
any time, all particles walk and branch independently. The coloring is kept
fixed (``quenched problem''). Throughout the paper we use the symbols
P, E to denote probability and expectation on the joint probability space
for the random coloring, the random walk and the random branching.

Let

'n(x)=number of particles at site x at time n
(1.3)

'n=['n(x) : x # Zd ]

Then ('n)'�0 is a Markov chain, with state space the finite subsets of NZ d
,

whose transition probabilities are easily written out in terms of q and the
fixed coloring. This Markov chain is an example of a branching random
walk in random environment (BRWRE). The goal of this note is to find
necessary and sufficient conditions on p, q for ('n)n�0 to be transient vs.
recurrent for almost all colorings.

Definition 1. BRWRE is said to be recurrent when

P['n(0){0 for some n�1]=1 (1.4)

and transient otherwise.
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By Kolmogorov's zero-one law, recurrence either holds for almost all
colorings or for almost no coloring.

1.2. Criteria for Transience vs. Recurrence

It is obvious that BRWRE is transient when q0>0 or when
�i�1 iqi� 1, q1{1. In both these cases the population has a strictly
positive probability of dying out. It is further obvious that BRWRE is
recurrent when q0=0 and d=1, 2. In that case no particle dies and each
particle returns to the origin with probability 1. Therefore we shall hence-
forth assume that

q0=0, :
i�1

iqi>1, d�3 (1.5)

Subject to (1.5), transience vs. recurrence only depends on the
behavior of p at infinity. It is intuitively clear that BRWRE is transient
when p(x) � 0 fast enough as &x& � � and recurrent when slow enough.
In fact, each particle alone performs a simple random walk, which is tran-
sient because d�3. To have at least one particle in the progeny hit the
origin, the population must grow fast enough.

It turns out that the critical rate of decay of p separating transience
from recurrence exhibits a dichotomy depending on the value of � i�1 iqi .
To state the result, let us abbreviate

+= :
i�1

iqi , +c=1�F (1.6)

where 0<F=F(d )<1 denotes the probability that the simple random
walk in dimension d�3 returns to the origin (e.g. F(3)r0.34).

Theorem 1. Let +>+c . Suppose that p satisfies the regularity
condition

sup
x # Z d

sup
y # Z d : c1 &x&�&y&�c2 &x&

p(x)
p( y)

<� for some 0<c1<c2<� (1.7)

Then for almost all colorings BRWRE is

transient if :
x{0

&x&2&d p(x)<�
(1.8)

recurrent if :
x{0

&x&2&d p(x)=�
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Theorem 2. Let 1<+<+c . Then there exists an 0<:c<� such
that for almost all colorings BRWRE is

transient if lim sup
&x& � �

&x&2 p(x)<:c

(1.9)
recurrent if lim inf

&x& � �
&x&2 p(x)>:c

The proofs of Theorems 1�2 are given in Sects. 2�4. The key point to
note is the difference in criteria on the tail behavior of p. For radially sym-
metric p, (1.8) reduces to the integral test ��

0 rp(r) dr<� resp. =� while
(1.9) reduces to r2p(r)<:c resp. r2p(r)>:c for large r.

The proof of Theorem 2 shows that :c=:c(d, q) satisfies lim+ a 1 :c=�
and lim+ A +c

:c=0, where +=+(q). It would be interesting to identify :c

explicitly, but this remains open (see Conjecture 1 below). We believe that
:c actually depends only on +, and not on the full distribution q, provided
the tail of q is tempered. We do not know what happens in the critical case
lim&x& � �&x&2 p(x)=:c .

The dichotomy expressed by Theorems 1�2 marks a transition from
local to global behavior in the progeny that hits the origin. Indeed, it turns
out that if +>+c , then recurrence occurs precisely when there is a single
green site somewhere producing an infinite offspring, while if 1<+<+c ,
then recurrence requires the progeny that hits the origin to come from
infinitely many green sites.

We note in passing that if q0>0 and +>1, then conditioned on sur-
vival the results are the same as in Theorems 1�2 (as can be seen from the
proofs in Sects. 2�4).

1.3. Three Colors

Consider the model with three colors: site x is colored green, blue or
red with probabilities pg(x), pb(x) resp. 1& pg(x)& pb(x), independently of
the other sites. There is no branching at red sites. At green and blue sites
the offspring distribution (mean offspring) is qg resp. qb (+g resp. +b).
Moreover, in analogy with (1.5), particles never die and d�3.

If +g , +b>+c , then the classification is the same as in Theorem 1 with
p replaced by pg+ pb . Similarly, if 1<+g , +b<+c , then the classification is
the same as in Theorem 2 with p replaced by pg+ pb and with :c=
:c(d, qg , qb). We shall therefore consider a mixed case, namely

1<+g<+c lim
&x& � �

&x&2 pg(x)=: 0<:<:c(d, qg)
(1.10)

+b>+c lim
&x& � �

&x&2+= pb(x) � 1 =>0
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For this choice, BRWRE with the green sites alone or with the blue sites
alone is transient. However, the interplay between green and blue can over-
come transience.

Theorem 3. For : small enough there exists an 0<=c<� such
that for almost all colorings BRWRE is

transient if =>=c
(1.11)

recurrent if 0<=<=c

The proof of Theorem 3 is given in Sect. 5 and shows that =c=
=c(d, qg , qb , :). Again, it would be interesting to identify this quantity,
which remains open. We believe that Theorem 3 actually holds for all
0<:<:c(d, qg), but we are not able to prove this.

1.4. Many Colors

Suppose there are n types of sites with branching. Site x has color i
with probability pi (x), and the mean offspring at a site with color i is +i

(i=1,..., n). As before, site x is colored red with probability 1&�n
i=1 pi (x),

all colors are independent, and there is no branching at red sites.
Suppose that +i{+c for i=1,..., n. Then the classification is very

similar to the case of three colors (n=2). Namely, transience vs. recurrence
does not change if we group all colors i with +i<+c into green and all
colors j with +j>+c into blue. In particular, the analogue of Theorem 3
holds after we set pg(x)=� i : +i<+c

pi (x) and pb(x)=� j : +j>+c
pj (x).

1.5. Motivation

Though mathematically challenging, the question addressed in this
paper is obviously a bit singular. As stated in the abstract, we primarily
view this note as part of a series of papers attempting to classify transience
vs. recurrence for random motions in random media. Applications of the
above model may for instance be found in chemistry, with the particles
playing the role of a reactant and the coloring the role of a catalyst.

Problems concerning branching random walk in random environment
have been treated in the literature, though far from extensively. For a
recent overview we refer the reader to ref. 4. Most papers focus on the
situation where both the initial particle configuration and the random
environment are stationary ergodic random fields.
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1.6. A Conjecture

We close this introduction with a conjecture for the :c in Theorem 2
due to S. Volkov.

Conjecture 1. Let 1<+<+c and assume that q has finite variance.
Then

:c=:� c
+c&+

+c(+&1)
with :� c=

(d&2)2

8d
(1.12)

In Sect. 6 we will give a heuristic argument in support of this conjec-
ture. The main idea is to make a link with the situation where the coloring
is updated at each unit of time (``annealed problem''). In fact, :� c will be
seen to play a role analogous to :c .

2. PROOF OF THEOREM 1

Note that if with positive probability the initial particle escapes the
green set, then BRWRE is transient. Now, according to [3, Theorem 4.1]
and [6, Remark 4], subject to (1.7) we have

:
x{0

&x&2&d p(x)=� � the green set is hit a.s. (2.1)

Hence, all that we need to do is show that, when +>1�F, if the green set
is hit a.s. then the progeny hits the origin a.s.

Assign index 0 to the initial particle. Let x1 be the first green point hit
by this particle, x2{x1 the second green point, etc. Since the green set is
trapping, the sequence x1 , x2 ,... is a.s. infinite. Assign index k to all particles
that are generated by the initial particle at the point xk . Suppose we allow
the particles with index k to generate their offsprings only at the point xk ,
and suppose we assign these offsprings also index k. Then, clearly, we
obtain a process that is less recurrent than the original BRWRE. Therefore
it suffices to prove that this process is recurrent.

For each k, a particle with index k escapes the point xk forever with
probability 1&F, and returns to xk and generates i offsprings there with
probability qi F. Consequently, we have a Galton�Watson process at xk ,
with the mean number of particles per offspring equal to � i�1 iqiF=
+F>1, implying a positive probability of not dying out. Since the Galton�
Watson processes for different k are independent, a.s. at least one of them
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will not die out. Consequently, a.s. at least one green point is visited
infinitely often, and from irreducibility of the simple random walk it follows
that a.s. the origin is visited infinitely often. K

3. TWO ELEMENTARY LEMMAS

In this section we formulate two elementary lemmas that will be
needed in the course of the proof of Theorem 2.

3.1. Hitting of Spheres

Let (!n)n�0 be a simple random walk on Zd. For A�Zd and x # Zd,
define

pA(x)=P[_n�1 : !n # A | !0=x] (3.1)

For A, B�Zd and x # Zd, with A & B=< and pA _ B(x)=1, define

pA, B(x)=P[_n�1 : !n # A, !m � B \1�m<n | !0=x] (3.2)

Lemma 1. For d�3 and for any a>1

lim
h A 1

lim inf
r � �

min
x # S(r)

pS(hr)(x)=1 (3.3)

lim sup
r � �

max
x # S(r)

pS(a&1r), S(ar)(x)< 1
2 (3.4)

where

S(r)=[x # Zd : r�&x&<r+1] (3.5)

Proof. The proof is a straightforward calculation, which we include to
make our exposition self-contained (see also [5, Lemma 4.3 and Lemma 5.1]).

1. Let Zn=&!n &. It is easily shown that for &x& � �

E(Zn+1&Zn | !n=x)=
d&1
2d

1
&x&

+O(&x&&2)

(3.6)

E((Zn+1&Zn)2 | !n=x)=
1
d

+O(&x&&1)
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To prove (3.4), we note that for all $>d&2 there exists an r0<� such
that Z&$

n is a supermartingale on [r�r0], i.e.,

E(Z&$
n+1&Z&$

n | Zn=r)�0 for r�r0 (3.7)

Indeed, putting 2n=Zn+1&Zn and using (3.6), we have

E(Z&$
n+1&Z&$

n | Zn=r)=r&$E \\1+
2n

Zn+
&$

&1 }Zn=r+
=r&$E \&$

2n

Zn
+

$($+1)
2

22
n

Z2
n } Zn=r++O(r&$&3)

=_&
$(d&1)

2d
+

$($+1)
2d & r&$&2+O(r&$&3) (3.8)

which is less than 0 for r large when $>d&2.

2. For H>1>h>0 and for r such that hr�r0 , define

{h, r=min[n�1 : Zn�hr | Z0=r]

{H, r=min[n�1 : Zn�Hr | Z0=r] (3.9)

p(h, H, r)=P[{h, r<{H, r]

Put {=min[{h, r , {H, r]. Since E{<�, we can use (3.7) to get

r&$=E(Z&$
0 | Z0=r)

�E(Z&$
{ | Z0=r)

�p(h, H, r)(hr)&$+[1& p(h, H, r)](Hr+1)&$

=(Hr+1)&$+ p(h, H, r)[(hr)&$&(Hr+1)&$] (3.10)

so

p(h, H, r)�
r&$&(Hr+1)&$

(hr)&$&(Hr+1)&$ (3.11)

But if &x&=r, then pS(a&1r), S(ar)(x)= p(a&1, a, r). So maxx # S(r)pS(a&1r), S(ar)(x)
�[r&$&(ar+1)&$]�[(a&1r)&$&(ar+1)&$] for a&1r�r0 . Now let
r � � to obtain the upper bound 1�(a$+1)<1�2.

594 den Hollander et al.



3. To prove (3.3), we note that for all $>d there exists an r0<�
such that Z$

n is a submartingale on [r�r0], i.e.,

E(Z$
n+1&Z$

n | Z$
n=r)�0 for r�r0 (3.12)

Using the same argument as above, we find that

p(h, H, r)�
r$&(Hr+1)$

(hr)$&(Hr+1)$ (3.13)

By letting H � � and using that limH � � p(h, H, r)=P[{h, r<�], we
get P[{h, r<�]�h$. But if &x&=r, then pS(hr)(s)=P[{h, r<�]. So
minx # S(r) pS(hr)(x)�h$ for hr�r0 . Now let r � � and h A 1. K

3.2. Hitting of Sets and the Green's Function

For x # Zd and a finite A�Zd, define

MA(x)= :
y # A

g(x, y) (3.14)

where

g(x, y)= :
n�0

P[!n= y | !0=x] (3.15)

denotes the Green's function of the simple random walk.

Lemma 2.

(a) If x # A, then

MA(x)&1
maxy # A MA(y)

�pA(x)�
MA(x)&1

miny # A MA( y)
(3.16)

(b) If x � A, then the same bounds hold without the &1 in the
numerators.

Proof.

(a) By (3.14)�(3.15) we have

MA(x)=E( |[n�0 : !n # A | !0=x]| ) (3.17)
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Putting {A=min[n�1 : !n # A], we may write for x # A

MA(x)&1= :
y # A

P[{A<�, !{A
= y | !0=x] MA( y) (3.18)

Since pA(x)=�y # A P[{A<�, !{A
= y | !0=x] by (3.1), the claim follows.

(b) For x � A, remove the &1 from the l.h.s. of (3.18). K

4. PROOF OF THEOREM 2

We shall prove that, when 1<+<1�F,

p(x)�: &x&&2 for large &x& and large : O BRWRE recurrent
(4.1)

p(x)�: &x&&2 for large &x& and small : O BRWRE transient

This will imply the claim made in Theorem 2, because transience vs.
recurrence only depends on the behavior of p at infinity and is a monotone
property: if p$�p, then BRWRE with p$ is at least as transient as BRWRE
with p, and vice versa for recurrent. The latter can be easily checked with
the help of a coupling argument.

4.1. Large :

Let G denote the set of green points. We shall need the following:

Proposition 1. Suppose there exist an =>0 and an infinite
sequence of finite disjoint sets A1 , A2 ,...�G with the following property:

inf
i�1

min
x # Ai

pA(x)>
1
+

+= (4.2)

Suppose also that the set � i�1 Ai is trapping, i.e., at least one particle hits
this set with probability 1. Then BRWRE with G as green set is recurrent.

Proof. The proof is analogous to that of Theorem 1 in Sect. 2. It is
not difficult to see that if the set �i�1 Ai is trapping, then a.s. at least one
particle hits an infinite number of sets Ai1

, Ai2
,.... Then, in the proof of

Theorem 1, instead of site x1 we take A i1
, instead of site x2 we take Ai2

, etc.
The rest is the same. K

Let us now start with the proof of the first claim in (4.1).
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1. For n�0, define

Wn=[x # Zd : 2n�&x&<2n+1]
(4.3)

Gn=Wn & G

We shall prove that, for : large enough, the infinite sequence Gn , Gn+1 ,...
satisfies (4.2) for n large enough a.s. Because p(x)�:�&x&2 for large &x&,
we have �x{0 &x&2&d p(x)=�, and so by (2.1) the set �i�n Gi is trap-
ping a.s. for any n�0. Hence we get recurrence via Proposition 1.

2. Abbreviate m=2n+1. For h # (1�2, 1), define the sphere

S(hm)=[x # Zd : hm�&x&<hm+1] (4.4)

From Lemma 1 it follows that for any $>0 there exists an h close to 1
such that

min
x # Wn

pS(hm)(x)>1&$ for n large enough (4.5)

(Note that pS(hm)(x)=1 when &x&�hm.) Therefore, to prove recurrence
via Proposition 1, it suffices to show that for any $>0 there exists an :
large enough such that

min
y # S(hm)

pGm
( y)>1&$ for n large enough a.s. (4.6)

Indeed, because Gn�Wn , (4.5)�(4.6) combine to give

min
x # Gn

pGn
(x)� min

x # Wn

pGn
(x)>(1&$)2 for n large enough a.s. (4.7)

so by picking $ such that (1&$)2>1�+ (use that +>1), we get what was
claimed in 1.

3. Pick any y # S(hm). If A$�A, then pA$( y)�pA( y). So it suffices to
prove (4.6) for a smaller set than Gn . Define

U h
n( y)=[x # Zd : &x& y&�(1&h) m]

(4.8)
G$n( y)=Gn & U h

n( y)

For some ;>0 (which will be chosen later) we consider a partition of Zd

into cubes of size ;m2�d:

Ki1 } } } id
=Zd & ;m2�d[[i1&1, i1)_ } } } _[id&1, id)] (4.9)
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Consider now those cubes Ki1 } } } id
that lie fully inside the ball U h

n( y). The
number of such cubes is equal to lntC1md&2 (n � �), with C1=
C1(d, ;, h). Denote these cubes by K$1 ,..., K$ln . Let &i be the number of green
points that lie in the cube K$i . Clearly, because p(x)�:�&x&2 we have

P[&i=0]� `
x # K$i

\1&
:

&x&2+
�\1&

:
(2h&1)2 m2+

; dm2

� exp {&
:;d

(2h&1)2= (n � �) (4.10)

where in the second inequality we use that x # U h
n( y) and y # S(hm) imply

that &x&�(2h&1) m.

4. Define a subset G"n( y)�G$n( y) in the following way. For 1�i�ln

with &i>0 we pick an arbitrary green point x$i from K$i , and put

G"n( y)= .
1�i�ln : &i>0

[x$i] (4.11)

i.e., we simply remove some points from the green set G$n( y) until each cube
K$i contains 0 or 1 green point. Note that from (4.10) and the strong law
of large numbers it follows that for any =>0 the proportion of cubes
containing no green point is at most

% :=exp {&
:;d

(2h&1)2=+= (4.12)

for n large enough a.s.

5. It is well known that (see [8, Sect. 26])

g(x, y)t
Kd

&x& y&d&2 (&x& y& � �) (4.13)

Since in the set G"n( y) the green points are far from each other (typically
at a distance of order m2�d), we shall pretend in our calculations that
g(x, y)=1 7 [Kd�&x& y&d&2]. The reader can easily check that the error
committed is negligible. We want to apply Lemma 2. To that end we derive
upper and lower bounds on MG"n( y)(x) for x # G"n( y).
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6. First, without loss of generality we may assume that x # K$1 &
G"n( y). Since G"n( y) has not more than 1 green point in each cube K$i , we
see that for n large enough a.s.

MG"n( y)(x)= :
x # G"n( y)

g(x, z)

�g(0, 0)+ :
ln

i=2

1
|K$i |

:
z # K$i

g(x, z)

�g(0, 0)+
1

;dm2 :
z # U n

h( y)

g(x, z)

�g(0, 0)+
1

;dm2 :
&z&�(1&h) m

1 7
Kd

&z&(x& y)&d&2 (4.14)

Here, in the first inequality we use that the Green's function is essentially
constant on each K$i . Clearly, the r.h.s. of (4.14) is maximal when x= y, so
for n large enough a.s.

&g(0, 0)+ max
x # G"n( y)

MG"n( y)(x)�
1

;dm2 :
&z&�(1&h) m

1 7
Kd

&z&d&2

�
C2(1&h)2

;d =: ' (n � �) (4.15)

with C2=C2(d ). Next, the worst case for a lower bound occurs when all
the cubes K$i with 0 green points are grouped around the point y. Since the
proportion of such cubes is at most %, we can assume that they all lie in
the ball with center y and radius t%1�d (1&h) m (n � �). Thus we have
for n large enough a.s., in the same spirit as (4.14),

&g(0, 0)+ min
y # S(hm)

MG"n( y)(x)-
1

;dm2 :
%1�d(1&h) m�&z&�(1&h) m

1 7
Kd

&z&d&2

� '(1&%2�d) (n � �) (4.16)

7. Combining (4.15)�(4.16) and applying Lemma 2(a), we get

min
y # S(hm)

pG"n( y)(x)-1&
1

g(0, 0)+'
['%2�d+1] for n large enough a.s.

(4.17)

We see from (4.12), (4.15) and (4.17) that for fixed h it is possible to choose
: large enough and ;, = small enough such that miny # S(hm) pG"n( y)(x) is
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arbitrarily close to 1 for n large enough a.s. Hence we have proved (4.6)
and so the proof of the first claim in (4.1) is complete. K

4.2. Small :

Let G again denote the set of green points, and let Wn and Gn be the
sets defined by (4.3). We again use the abbreviation m=2n+1. Let

HR(x)=[ y # Zd : &y&x&�R] (4.18)

The key tool in our proof will be the following proposition, which plays a
role analogous to Proposition 1.

Proposition 2. Suppose that p(x)�:�&x&2 for large &x&.

(a) For any =>0 there exists an :=:(=)>0 such that

max
x # Gn

pGn
(x)�F+= for n large enough a.s. (4.19)

(b) For any =>0 there exists an :=:(=) and a $=$(=)>0 such that

max
x � Gn : Hm $(x) & Gn=<

pGn
(x)�= for n large enough a.s. (4.20)

Proof. We begin with the proof of Part (a).

1. Let Ki1 } } } id
be the cubes defined in (4.9). Consider those cubes that

have a nonempty intersection with Wn . The number of such cubes is equal to
lntC1 md&2 (n � �), with C1=C1(d, ;). Denote these cubes by K$1 ,..., K$ln .
As before, let &i denote the number of green points in the cube K$i . It is
easily seen that &i is stochastically smaller than a Poisson random variable
with parameter *n satisfying

*nt
:

m2 ;dm2=:;d (n � �) (4.21)

Write

%k=
1
ln

:
ln

i=1

1[&i=k] (4.22)

to denote the proportion of cubes carrying exactly k green points.
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2. We again want to apply Lemma 2(a). To that end we pick any
x # Gn and try to bound MGn

(x) from above. Clearly

MGn
(x)= :

y # Gn

g(x, y)= g(0, 0)+ :
k�1

Dk(x) (4.23)

where

Dk(x)= :
ln

i=1

:
y # Gn & K$i : &i=k

g(x, y) (4.24)

To derive an upper bound for Dk(x), we need some preparations.

3. Because p(x)�:�&x&2 for large &x&, we have for any 0<$<1

P[ |G & H&x&$(x)|�2]�C2 &x&d$ \ :
&x&2+

2

=C2:2 1
&x&4&d$ (4.25)

for &x& large enough a.s., with C2=C2(d ). If d=3, then for 0<$<1�3 the
r.h.s. of (4.25) is summable and by Borel�Cantelli we get that a.s. for n
large enough there are no x, y # Gn such that &x& y&�m$. However, if
d�4, then there is no $>0 for which the r.h.s. is summable. For this case
Borel�Cantelli even gives that G contains an infinite number of nearest-
neighbor pairs (the probability of a pair at x is of order &x&&4).
Nevertheless the following holds for any d�3:

Proposition 3. Let 0<$<1�d and G*=[x # G : G & [H&x&$(x)"
[0]]{<]. If : is small enough, then BRWRE with G as green set resp.
G"G* as green set are either both recurrent or both transient.

Proof. The proof is postponed to Section 5.3. K

4. Before we proceed, let us explain why we need Proposition 3. We
would like to show that maxx # Gn

MGn
(x)& g(0, 0) can be made arbitrarily

small by picking : small, as this would allow us to apply Lemma 2(a).
However, for d�4 this is not possible, because G contains infinitely many
nearest-neighbor pairs. Therefore we must remove some sites from G,
without however affecting transience or recurrence. In essence, what
Proposition 3 does is show that we can remove the set G* because this is
non-trapping not only for a single particle generated in G"G* but for all
particles generated in G"G*.

5. Let Gn*=Wn & (G"G*). Similarly as in Section 4.1, we note that
the Green's function is essentially constant on each cube K$i , except the one
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containing x (which we may denote as K$1). Therefore it follows from Borel�
Cantelli and (4.21)�(4.22) that for any =>0 and for n large enough a.s.

%k=0 (k>m=) (4.26)

So, using (4.26) and Proposition 3, we have

:
y # K$1 & G*n

g(x, y)�m= _1 7
Kd

m$(d&2)& (4.27)

which tends to zero as n � � when =<$(d&2). We therefore see that we
can neglect all the green points that are in the same cube as x. This allows
us to estimate Dk(x). From now on we assume that x # G"G*.

6. The worst case for the upper bound for Dk(x) occurs when all the
cubes K$i with &i=k are grouped around x. Since the number of such cubes
is ln%ktC1md&2%k , we therefore obtain, in the same spirit as the estimate
in (4.14),

Dk(x)�k
1

;dm2 :
&z&�C3[; 3m2C1md&2%k]1�d

1 7
Kd

&z&d&2�C4k%2�d
k (4.28)

with C3=C3(d ), C4=C4(d ). So, to estimate MGn*
(x) in (4.23) we have to

estimate the quantity (recall (4.26))

�m= :
m=

k=1

k%2�d
k (4.29)

7. For #>0 and k�1, define

pk(#)=P {k%2�d
k >

#
k2= (4.30)

To obtain a bound for pk(#), we need the following elementary lemma.

Lemma 3. Let `i be i.i.d. random variables with P[`i=1]= p and
P[`i=0]=1& p. The for any 0<p<a<1

P {1
n

:
n

i=1

`i�a=�exp[&nH(a, p)] for all n�1 (4.31)
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where

H(a, p)=a log
a
p

+(1&a) log
1&a
1& p

>0 (4.32)

Proof. See, e.g., [7, p. 68]. K

Using Lemma 3 and (4.21), we obtain

pk(#)=P {%k>
#d�2

k3d�2=
=P { 1

ln
:
ln

i=1

1[&i=k]>
#d�2

k3d�2=
�exp {&ln H \ #d�2

k3d�2 ,
*k

n e&*n

k! += (4.33)

8. Next we note the following facts:

1. Since *n � 0 as n � � and : � 0 (recall (4.21)), we can, for any
#>0, take : small enough such that #d�2�k3d�2>*k

n e&*n�k! for all k�1 for
n large enough.

2. H(#d�2�k3d�2, *k
n e&*n�k!)t#d�2k&(3d&2)�2 log k as k � �.

Thus we obtain, recalling that lntC1 md&2,

max
1�k�m=

pk(#)�exp[&C5md&2&(3d&2) =�2 log m=] (4.34)

with C5=C5(d, ;, #). Using Borel�Cantelli, we therefore see that for n large
enough a.s. we have k%2�d

k �#�k2 for all 1�k�m=, so

�m� :
m=

k=1

#
k2�

?2#
6

for n large enough a.s. (4.35)

9. We can now complete the proof of Part (a) by choosing # small
enough. Indeed, via (4.23)�(4.29) and (4.35) we then get MGn*

(x)�
g(0, 0)+= for any =>0 for n large enough a.s. But, trivially, MGn*

(x)�
g(0, 0), and so Lemma 2(a) gives (recall that x # Gn* is arbitrary)

max
x # Gn*

pGn*
(x)�

g(0, 0)&1+=
g(0, 0)

for n large enough a.s. (4.36)

Since F=1&1�g(0, 0), this proves the claim in Part (a).
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10. Part (b) is proved just like Part (a), except that in (4.36) instead
of Lemma 2(a) we use Lemma 2(b). Indeed, the constant g(0, 0) drops out
of the r.h.s. of (4.23), and the rest of the proof may be left intact. K

Let us now start the proof of the second claim in (4.1).

1. Let

Sn=S(2n)=[x # Zd : 2n�&x&<2n+1] (4.37)

which is the inner layer of Wn . A possible approach is to observe particles
only when they are in one of the spheres Sn , n�0. However, then a com-
plication arises: there may be some points in G that lie close to Sn , namely,
within distance 2$n&1, where $ is from Proposition 3. To avoid this, we
modify the set Sn . Pick any x # G such that Sn & H2$n&1(x){<. Remove
from Sn all the points that lie inside H2$n&1(x) and add to Sn all the points
that lie on Wn & �H2$n&1(x), i.e., the part of the surface of H2$n&1(x) sticking
out of Sn . Repeat this procedure for different x # G. The result is a new set
S$n that looks like the sphere Sn but has ``bubbles sticking out.'' Clearly, the
distance between G and S$n is at least 2$n&1. We shall observe particles only
when they are in one of the sets S$n , n�0.

2. Pick any n�0 and x # S$n . Suppose that at time 0 we place one
particle at x and no particles at other sites. We introduce a delayed
BRWRE defined as follows. At times 1, 2,..., {n the set S$n&1 _ S$n+1 is
delaying, i.e., all particles upon entering this set are ``frozen'' until time {n .
Here we define {n to be the first time when there are no particles in the
interior of the ``ring'' between S$n&1 and S$n+1 . After that we independently
repeat this procedure with all the offsprings of the initial particle, starting
from S$n&1 resp. S$n+1 , etc. Now, it can be easily seen that if {n<� a.s. for
all n, then this delayed BRWRE is equivalent to the original BRWRE from
the point of view of transience vs. recurrence.

3. We next prove that there exists an : small enough such that
indeed {n<� a.s. for all n. Recall the definition of G*. Let G$n be the inter-
section of G"G* with the ``ring'' between S$n and S$n+1 . Using Proposi-
tion 2(a), we see that we can choose : small enough such that a.s. for n
large enough

+ max
x # G$n

pG$n
(x)<1 (4.38)

(use that +<+c=1�F ). Since, particles are frozen upon entering S$n&1 _
S$n+1 , it is obvious that P[{n<�] is larger than or equal to the probability
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of extinction of a Galton�Watson process with the mean number of par-
ticles per offspring equal to + maxx # G$n

pG$n
(x). By (4.38) we therefore have

P[{n<�]=1.

4. Thus it now suffices to prove that for : small enough the delayed
BRWRE is transient. This will be done via comparison with a one-dimen-
sional BRWRE. Let 'n(x) be the total number of particles generated in the
interior of the ``ring'' between S$n&1 and S$n+1 up to time {n (not including
the initial particle). Define the distribution function

hn(k)=max
x # S$n

P['n(x)�k] (k�0) (4.39)

Define also vn=maxx # S$n
pS$n&1

(x). Then the delayed BRWRE is at least as
transient as the BRWRE on N defined as follows. If there is a particle
in n, then this particle jumps to n&1 with probability vn and to n+1 with
probability 1&vn . (Since in the d-dimensional process we do not know
where this particle generates its offsprings, we must consider the worst
scenario: all the offspring is absorbed in S$n&1 . Afterwards we add `n

particles to the point n&1, where the random variable `n is distributed
according hn . We repeat this procedure for all particles independently, etc.

5. From Lemma 1 it follows that for all n large enough vn<1�2&=
for some =>0. Proposition 2(b) implies that for any =>0 we can choose
: small enough such that E(`n)<= for all n. Indeed, since the distance
between G and S$n is at least 2$n&1, Proposition 2(b) gives us that the prob-
ability of hitting a green point is small. Therefore the mean size of the total
offspring generated by the Galton�Watson processes mentioned below
(4.38) is finite and bounded uniformly in n. From this we get that the mean
size of the progeny of the initial particle up to time {n is small. Indeed, let

k0=max
n

max
x # G$n

E[size of progeny | initial particle starts at x] (4.40)

Since the probability of hitting a green point is small, say less than =0 , the
mean size of the progeny is less than =0k0 , and this can be made arbitrarily
small by picking : small enough (recall Proposition 2(b)).

6. To complete the proof we compare the above BRWRE on N with
a spatially homogeneous BRW on N. Suppose that each particle produces
a mean offspring r&1 at the left neighbor and a mean offspring r+1 at the
right neighbor, while site 0 is absorbing.
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Lemma 4. There exists an =>0 small enough such that: if r&1<
v+=<1�2 and r+1=1&v>1�2, then spatially homogeneous BRWRE on
N is transient.

Proof. Let f (x)=*x (x�0), where * is the smallest positive root of
the equation (v+=)&*+(1&v) *2=0. If v<1�2, then there exists an =>0
such that this equation has two real roots that are both strictly positive
and strictly less than 1. Hence,

:
i=&1, +1

ri f (x+i)� f (x) for all x>0 (4.41)

The claim now follows from [2, Theorems 2.1 and 2.2]. K

7. If we now consider the quantities r\1 for the spatially homo-
geneous BRW on N, and choose : small enough, then we can make =
arbitrarily small while keeping v fixed. Indeed, since r&1=v+= and
r+1=1&v, by applying Lemma 4 we see that the spatially homogeneous
BRW is transient. Hence the delayed BRWRE is transient, which finishes
the proof of the second claim in (4.1). K

We conclude this section with a remark. Suppose that BRWRE is
transient. Is it true that for almost all colorings the number of particles
hitting 0 is finite a.s.? The answer is no.

To see why, consider first the case +>+c . The set G, although non-
trapping, is hit with a positive probability, and so the Galton�Watson pro-
cesses in the proof of Theorem 1 survive with a positive probability. Hence,
for almost all colorings the number of particles hitting 0 is infinite with a
positive probability.

Next consider the case 1<+<+c . For d=3 the number of hittings of
0 is finite with probability 1 only with some positive probability w.r.t. the
coloring. For d�4, on the other hand, there exists a constant 1<+(d )<+c

such that: if 1<+<+(d ) then the situation is the same as for d=3, while
if +>+(d ) then the situation is the same as for +>+c . Indeed, the prob-
ability that there are k green points grouped together around x is of order
&x&&2k. So if 2k�d, then there is an infinite number of such groups in Zd.
Let k0=wd�2x, and put (recall (3.1))

Fd= max
x1 ,..., xk0

# Z d
min

i=1,..., k0

p[x1 ,..., xk0
](xi) (4.42)

Trivially, Fd�F, and the inequality is strict for d�4. It is not difficult to
prove that +(d )=1�Fd .
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5. PROOF OF THEOREM 3

Recall (1.10). We shall prove that BRWRE is

recurrent for fixed : and small =
(5.1)

transient for fixed = and small :

This will imply the claim made in Theorem 3 by monotonicity: the more
branching sites there are, the more recurrent BRWRE is.

5.1. Small =

1. To prove the recurrence it suffices to prove that the blue set B is
trapping w.r.t. the entire progeny. For that we need some preparatory
lemmas. Denote by un the number of particles generated in the set Gn=
Wn & G (not including the initial particle).

Lemma 5. Eun>#n for some #>1 and n large enough. Moreover,
un>(#&=)n for any =>0 and n large enough a.s.

Proof. From the argument in Sect. 4.1 it follows that any particle
entering Wn produces a mean offspring that is uniformly larger than 1 for
all n. From this the claim follows. More precisely, from Sect. 4.1 we see that
each particle entering Wn produces some random number of offsprings,
say }, which can be minorized by some random variable }n , the distribution
of which is independent of n and satisfies E}n>#>1. From this and the
strong law of large numbers the claim follows. K

2. We shall estimate from above the probability that a particle never
enters B when it starts from some x # Gn . Denoting Bn=Wn & B, we see
that this probability is less than or equal to the probability that the particle
never enters Bn , which is equal to 1& pBn

(x) with x # Gn . Pick =, =$>0.
Similarly as in Sect. 4.1, we partition Wn into cubes K$i of size m(2+=+=$)�d.
The number of such cubes is equal to lntC1 md&2&=&=$ (n � �), with
C1=C1(d ). The probability that there are no blue sites in a given cube K$i
is easily seen to be of order exp(&m=$). Therefore, Borel�Cantelli gives us
that in all but finitely many cubes we have at least one blue site. As before,
we remove some blue sites until every cube contains exactly one blue site.
Then a calculation similar to (4.14)�(4.16) gives

min
x � Bn

MBn
(x)�

C2

m=+=$ for n large enough a.s. (5.2)

with C2=C2(:, =, =$).
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3. Next we apply Lemma 2(b). The denominator in the lower bound
in Lemma 2(b) is at least of order 1, since trivially minx # Bn

MBn
(x)�

g(0, 0). Since there is not more than one blue point in each cube, a calcula-
tion similar to (4.14)�(4.16) gives us that maxx # Bn

MBn
(x)�g(0, 0)+C3 ,

with C3=C3(:, =, =$). So Lemma 2(b) gives

min
x � Bn

pBn
(x)�

C4

m=+=$�
C4

2(n+1)(=+=$) (5.3)

with C4=C4(:, =, =$).

4. Pick = and =$ such that 2=+=$<#. Number the particles in the order
in which they are born (particles never die because of (1.5)). Then

:
�

n=1

:
un

i=1

P[i th particle ever enters Bn]=� a.s. (5.4)

by the second part of Lemma 5. Thus, by Borel�Cantelli, we see that the
set B is visited infinitely often. An argument similar to that in the proof of
Theorem 1 now gives recurrence because +b>+c . K

5.2. Small :

Let us explain why we have postponed the proof of Proposition 3 to
Section 5.3. As discussed earlier, for d�4 we have an infinite number of
nearest-neighbor pairs of green sites a.s. Let (x, y) be any such a pair, and
let

F $=P[!n=x or y for some n>0 | !0=x] (5.5)

where (!n)n�0 is a simple random walk in Zd. Clearly, F $ does not depend
on (x, y), and F $>F. Suppose that 1�F $<+g<1�F. If a particle hits some
nearest-neighbor pair of green sites, then with a positive probability it
produces an infinity progeny there (cf. the proof of Theorem 1). So, to
prove transience, it is necessary to prove that the set of all nearest-neighbor
pairs of green sites is not trapping w.r.t. the entire progeny. In fact, we even
need to prove that the set G* (which contains all the nearest-neighbor
pairs) from Proposition 3 is not trapping w.r.t. to the entire progeny.
However, since the density of G* around x is less than &x&&2, it turns out
that this problem is very similar to the problem of proving that the blue
set is not trapping.

Thus, we have to prove that B _ G* is not trapping w.r.t. all the par-
ticles generated in G"G*. In the present section we shall prove that B is not
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trapping. In the next section we shall prove that G* is not trapping. The
reason for choosing this order is that the latter requires some artificial con-
struction. Thus, throughout this section we shall assume that only the
points in G"G* are green.

1. Recall the definition of un from Sect. 5.1.

Lemma 6. Eun<#n for some #>1 and n large enough. Moreover,
un<(#+=)n for any =>0 and n large enough a.s. Here # can be made
arbitrarily close to 1 by picking : small enough.

Proof. At the end of Sect. 4.2 we saw that our BRWRE can be
majorized by a one-dimensional spatially homogeneous BRW that is tran-
sient. For the latter it is not difficult to get the claim of Lemma 6. One way
of doing this is the following. Each particle alone performs a transient
homogeneous random walk (`n)n�0 on Z+. Therefore there exists an a>0
such that `n>an a.s. for n large enough, and

P[`n�an]�e&bn (5.6)

for some b>0. Since the BRW is spatially homogeneous, the total number
of particles at time n is at most eb$n a.s. for n large enough, where b$>0 can
be made arbitrary small by picking : small enough. We choose : so small
that b$<b, and we get from (5.6) that the coordinate of the leftmost par-
ticle of the progeny at time n is �an a.s. for n large enough. Thus, the total
number of particles that ever see sites <an is at most eb$n. From this the
claim of Lemma 6 follows. K

2. We want to show that the blue set is not trapping with respect to
the entire progeny. The main idea to achieve this is to keep our model
quenched w.r.t. the green sites, but to make it annealed w.r.t. the blue sites.
More precisely, first we color x green with probability pg(x), independently
for all x, and the resulting green set remains fixed forever. After that, if x
is not green, then at each unit of time we color it blue with probability
p$(x) and red with probability 1& p$(x), independently of the others sites
and of the colors at previous times, where

p$(x)=
pb(x)

1& pg(x)
(5.7)

It is easily shown (see, e.g., [3, Sect. 5]) that the annealed blue set is
more trapping than the quenched blue set. We note that p$(x)tpb(x) for
large &x&.
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3. Let Nn be the number of particles at time n, and let (!1
n ,..., !Nn

n )
denote their positions. Let {i be the moment of birth of the ith particle.
Define

Ri=P[i th particle never sees blue]= `
�

n={i

[1& p$(! i
n)] (5.8)

Then

P[none of the particles ever sees blue]

= `
�

n=1

`
x : !i

n=x for some i=1,..., Nn

[1& p$(x)]

� `
�

n=1

`
Nn

i=1

[1& p$(! i
n)]

= `
�

i=1

Ri (5.9)

So we need to prove that >�
i=1 R i>0, i.e., ��

i=1 (1&R i)<�.

4. We try to estimate 1&Ri from above when the i th particle is born
somewhere in Wn . Following [3, Lemma 2.1], we note that the probability
of trapping by the annealed blue set is equal to the probability of
hitting 0 for the random walk that jumps from x directly to 0 with probability
p$(x) and from x to nearest-neighbor sites with probability 1& p$(x). Let
(`n)n�0 denote this random walk.

Lemma 7. Let = be as in (1.10). There exist constants }, K>0 such
that ( f (`n))n�0 is a supermartingale on [&x&>K ], where

f (x)=
1

(&x&+})= (5.10)

Proof. See [3]. Use that p$(x)tpb(x)t1�&x&2+=. K

5. Let ?(x)=P[_n�0 : `n=0 | `0=x] (i.e., the probability of trap-
ping of the original random walk by the annealed blue set). Denote by
?K (x) the probability of hitting the ball HK (0), and by ?K, M (x) the prob-
ability of hitting the sphere �HM(0) before hitting the ball HK (0) (M>K ).
Obviously, ?(x)�?K (x). Make the ball and the sphere absorbing. Then
f (`n) � f� (n � �) and, using Lemma 7, we get that for large &x&

f (x)�Ef��?K, M (x) f (K )+[1&?K, M (x)] f (M ) (5.11)
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or

?K, M (x)�
f (x)& f (M )
f (K )& f (M )

(5.12)

By letting M � � we get

?(x)�?K (x)�
f (x)
f (K )

t(K+})= &x&&= (5.13)

6. Finally, we apply Lemma 6, choosing : small enough to ensure
that #<2=. We have

:
�

i=1

(1&Ri)= :
�

n=1

:
un

i=1

P[i th particle ever sees blue]<� a.s. (5.14)

which completes the proof. K

5.3. Proof of Proposition 3

We need to prove that with positive probability none of the particles
generated in G"G* hits G*. The idea is the same as in the proof of
Theorem 3: we majorize the quenched problem by the annealed one.

1. We begin by defining a random set G** as follows: for each x # Zd,
with probability

px :=
C2:2

&x&4&d$ (5.15)

we color green the whole ball H4&x&$(x), independently of the other sites.
Note that, by (4.25), px is greater than or equal to the probability of the
event [ |G & H&x&$(x)|�2].

2. The following lemma will be needed.

Lemma 8. (G"G*) _ G** is stochastically larger than G (except for
a finite neighborhood of the origin).

Proof. For x # Zd, let Ax=[ |G & H&x&$(x)|�2]. By (4.25) we have

P(Ax)�px (5.16)

We want to show that the set G** is stochastically larger than G*.
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Let 'x=1Ax
. Then ['x : x # Zd ] is a field of dependent Bernoulli ran-

dom variables, of which we know the distribution on all finite sets. We can
reconstruct the set G in the following way: (i) construct a realization of the
field ['x]; (ii) given this realization, construct G, keeping in mind that it
has to correspond to the field ['x].

Consider also a field of independent Bernoulli random variables
['$x : x # Zd ], with P['$x=1]= px . Let

U=[x # Zd : 'x=1] (5.17)

U$=[x # Zd : '$x=1 or _y such that '$y=1 and H&x&$(x)/H4&y&$( y)]

Clearly, it is sufficient to show that U$ is stochastically larger than U.
Note that if y � H4&x&$(x) , then H&x&$(x) & H&y&$( y)=<, so in this case

the random variables 'x and 'y are independent. We construct a
coupling such that U$#U. To that end, we let [`x : x # Zd ] be i.i.d. random
variables, uniformly distributed on [0,1], and we put '$x=1[`x<px] . To
construct the field ['x], we first enumerate all the sites: Zd=[x1 , x2 ,...].
Next we put 'x1

=1[`x1
<px1

] , so 'x1
='$x1

. If 'x1
=0, then using that the

random variables 'x1
and 'x2

are either independent or positively correlated,
we have

p$x2
:=P['x2

=1 | 'x1
=0]�P['x2

=1]= px2
(5.18)

so we put

'x2
=1[`x2

<p$x2
]�'$x2

(5.19)

If 'x1
='$x1

=1, then all sites y such that 'x and 'y are dependent already
belong to U$, so we can just exclude them from the sequence [x1 , x2 ,...].
We continue to construct the field ['x] in this way. At each step n we have

[U & [x1 , x2 ,..., xn]]/[U$ & [x1 , x2 ,..., xn]] (5.20)

Hence, by induction, U/U$, and the proof of Lemma 8 is complete. K

3. Since every x # Zd belongs to tC2 &x&d$ balls H4&y&$( y), with
C2=C2(d ), we get by using (4.25) that

p"(x) :=P[x # G**]�
C 2

2:2

&x&4&2d$ for &x& large enough (5.21)

Because 0<$<1�d, this implies that the density of G** is �C2 &x&&(2+=)

for some =>0. Then, it is possible to follow the ideas in the proof of
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Theorem 3, with G** taking over the role of the blue set, to complete the
proof of Proposition 3. More precisely, using that G** is independent of G,
we can make the set G** annealed. Then, using that the points of G** are
positively correlated, we can easily show that (5.9) also holds with p$(x)
replaced by p"(x). The rest of the argument is the same. K

6. SUPPORT FOR CONJECTURE 1

In this section we explain what is behind Conjecture 1. The argument
is due to S. Volkov.

Transience vs. recurrence only depends on the behavior of p(x) for
large &x&. Because for large &x& the density of green sites is small, most
green sites will be isolated, i.e., far away from other green sites. Therefore
it is reasonable to assume that the dominant part of the offspring comes
from particles that never ``commute'' between green sites. In other words,
particles can return a number of times to the same green site, but once they
hit another green site they never return.

In this approximation, the mean total offspring +� per particle at a
green site is given by the equation

+� =+[(1&F)+F+� ] (6.1)

because each particle has a probability F to return to the green site and
generate its own offspring. So

+� =
+(1&F )
1&+F

(6.2)

Thus, the annealed equivalent of our quenched problem is one where the
mean offspring at site x is

[1& p(x)]++� p(x)=1+ p(x)
+&1

1&+F
(6.3)

In the case where p(x)t:&x&&2, this equals

1+
:�

&x&2+h.o. with :� =:
+c(+&1)

+c&+
(6.4)

where we recall that +c=1�F. A similar calculation shows that if the off-
spring distribution at a green site has finite variance, then the variance of
the offspring at site x is O(&x&&2). Next, in [5, Theorem 5.1] it is shown
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that, under these conditions, the annealed BRWRE is transient if :� is small
and recurrent if :� is large. In fact, the calculations in [5, Sect. 4] suggest
that there is a critical value :� c separating transience from recurrence given by

:� =
(a3)2

8a2

with a3=2a1&a2 (6.5)

where a1=(d&1)�2d and a2=1�d are the coefficients occurring in (3.6). If
this were true, then :� =(d&2)2�8d and Conjecture 1 would follow from the
relation between : and :� in (6.4).

The above heuristic argument hinges on the assumption that most par-
ticles do not ``commute'' between green sites. As explained in Steps 3 and
4 in the proof of Proposition 2 in Sect. 4.2, for d�4 this point is actually
a bit delicate. This is why a proof of Conjecture 1 is presently beyond our
reach.
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